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Critical wavelength for river meandering
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A fully nonlinear modal analysis identifies a critical centerline wave nunagefor river meandering that
separates long-wavelength bends, which grow to cutoff, from short-wavelength bends, which decay. Exact,
numerical, and approximate analytical resultsdgrrely on the Ikeda, Parker, and Sawai Fluid Mech.112,

363 (1981 ] model, supplemented by dynamical equations that govern the river migration and length. Predic-
tions also include upvalley bend migration at long times and a peak in lateral migration rates at intermediate
times. Experimental tests are suggested.
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Among the most fascinating behaviors of alluvial rivers isstraight river between the same initial and final points as the
their tendency to meander and rework their floodplainssinuous river. Because of these sinuosity dependencies, di-
Some meander bends of the lower Mississippi move 20 nmensionless variables used henceforth employ the straight-
laterally per year[1]. Even on a planar floodplain, river ened length and time scale®,=Hy/2C; and T,
bends grow slowly in amplitude and accordingly increase the= D§/bE Uy,
river sinuosityS=L/L,, defined as the ratio of the total river ~ In freely meandering rivers, bed erosion at humps and
lengthL to the linear distance, between its endpoints. As deposition at hollows produce a uniform downstream bed
the sinuosity increases, adjacent river bends occasional§lopel, apart from small-scale dunes and ripples. The corre-

meet each other and cut off an oxbow lake, thereby suddenfgPonding linear centerline bed elevatins z,—Is involves
shortening the river and reducing its sinuosity. e downstream distancemeasured along the bed center-

Rivers meander because large downstream velocitie%”e' The horizontal projection of the river is conveniently

erode soil from the outside banks of large-wavelength rive@€Scribed at timé by the angleg(s,t) between the down-
bends[2], causing such bends to grow in amplitude. Short-stream direction and the fixed cartesian directioifhe cor-
wavelength bends decay because Bernoulli's principle det€sponding channel curvatukgs,t) = —d6/Js, measured as
mands large velocities and erosion at thisiside banks. ~ POSitive for turns to the right, must respond to the normal
Bends migrate down-valley because the cross-stream she&iigration velocityv (s,t), measured as positive for channel
in the downstream velocity requires a downstream distancgigration to the left, as seen by a local riverbound observer
D =H/2C; to recover from changes in the channel curvature ac_'l_nhgedlok\gg;trgirpker and Sawai equati@ predicts the
[3.']' .Here,H |_s_the average depth arity is a dimensionless curvature-dependent migration velocity for quasisteady non-
friction coefficient.

: resonant turbulent flow in shallow sinuous channels. It is
Nat_ural rivers are fully developed turbulent boundary Iay'convenient to rewrite this equation using dimensionless vari-
ers, with large typical Reynolds numbers-R&H/v~10°, ables[3],
where U is the average downstream velocity ands the
kinematic viscosity of water. Consequently, momentum v ok P
transport is dominated by stretching and folding of turbulent 51/3_—(93 o s + ST/sK' (1)
eddies, rather than by viscous diffusion. To close the system
of equations, the turbulent downstream bed stregs Here the dimensionless numbé?, which we call the
=pC;U? is evaluated using consta@ and constant mass “Parker number” in honor of Parker’s pioneering contribu-
densityp. In mechanical equilibrium, the upstream bed forcetions, measures the importance of the secondary flow. From
per unit arears on the overlying fluid volume must balance right to left, the terms in Eq(1) account for the secondary
the downstream component of gravitational force per uniflow, the free shear, the downstream decay of cross-stream
areapgHI, whence[2] U= (gHI/C;)Y? whereg is the ac-  shear, and the resulting changes in the migration rate. The
celeration of gravity and is the downstream bedslope. A typical valueP~5 includes the transport of downstream mo-
dimensionless bank erodibiliti is defined as the propor- mentum by the secondary flow discussed by Johannesson
tionality constant between the normal bank migration rateand Parkef4]. To track the centerline motion, most previous
and the excess near-bank downstream fluid veld@tyIn- studies of the lkeda, Parker, and Sawai equation rely on co-
creasing the sinuosity of a river of constant width and  ordinate transformation®,5—7 or on numerical implemen-
constant discharg®=2bHU lowers its average slopé tations[8-10].
=1o/S and its flow velocityU=U,S Y3 and raises its To track the centerline motion, we employ exact dimen-
depthH=H,S"3 wherel,, Uy, andH, are values for a sionless nonlinear dynamical equations of motion governing

the river length and shape,
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which may be derived3] from Eq. (4) of Ref. [11], and 08¢ AN 1

which include river stretching and shrinking through the VNG

nonlinear integral terms. Referenckl] treats stretching and \ --..B

shrinking exactly, but replaces E(.) by a local relationship 0.6 r \ e Tt ’
which precludes down-valley migration of meander bends,

an essential feature of real rivers. To allow for maximum
flexibility in defining the upstreams(=0) and downstream 0.4 \ T
(s=L) ends of the river, Eqg2) and(3) include the respec- \
tive downstream migration velocitiag, and u, . Equation )
(3), with ug=0, appears in previous studies of periodic riv- 02 \ T
ers [12,13. Equation(2), introduced here, allows explicit \
investigation of the time evolution of the river length, and \
plays a key role in the derivation of our fully nonlinear sta- 0.0 ' ' ' ' '
bility results.

Equation(2) gives the time rate of change of the river
Iength, |ncllud|ng bqth Iate_ral a_nd dc_anstream COI”ItI’IbutI.OHS. FIG. 1. Exact and approximate nonlinear results for the critical
During a tlmedt, rver mlgra_tlon dl_spl_a_ces_the centerl_lne dimensionless centerline wave numlogrvs the river sinuositys
laterally a distancedt, s_tretchmg an infinitesimal cente_rllne =L/L,. Here, the “centerline wavelengthL is the distance be-
arc of lengthds and radiusR to a new lengtids’ and radius  tyeen adjacent bend apexes measured along the river centerline,

'=R+uvdt, while the subtended angtessR=ds'/dR’ re-  and the “cartesian wavelength, is this distance measured along
mains unchanged. Integrating the resulting relatish=(1  a straight line. At the globally unstable fixed poi 27/L=q_,
+ kvdt)ds gives the lateral ContributioﬁBdeS to Eq.(2), finite-amplitude periodic meander patterns migrate downvalley at
where k=1/R is the local curvature. A downstream contri- constant speed without changing form. Small-wavelength bends
butionu, - ug is also included to allow flexibility in defining with g>q. are obliterated by river straightening, whereas large-

P-1/2qC

the ends of the river. wavelength bends witlg<<q. grow unrestrained until adjacent
To study the nonlinear dynamics of periodic meander patbends meet and abandon an oxbow lake. Thus, oxbow cutoff is the
terns, we writeuo=u, and predicted fate of growing meander bends unhindered by natural
topography or by human intervention. Since small-wavelength
+o0 bends quickly disappear, large-wavelength bends are predicted to
o(s,t)= E 6,(t)e"9s, (4) dominate in nature. An expansion to third order in the bend ampli-
== tude[5,7] gives P~ Y?q.=(4— S)/3 [trace A, Eq. (7)], valid for S

—1, whereP measures the importance of the secondary flow. The
with a time-dependent centerline wave numger2#/L and  exact upper limitP~*?q,=S™** [traceB, Eq. (8)] holds for arbi-
wavelengthL, fixed Cartesian wave numbegg=27/L, and  trary Sand for arbitrary periodic rivers; bends with-P"?S™** are
wavelengthL,, sinuosity S=L/L,=0,/q, and the reality obliterated by straightening regardless of the details of their Fourier

condition 6_,= ¢ . Accordingly, Eqs(1)—(3) reduce to spectra. Equatiq(@) supplies an explicit analy_tical estimdieace
C, for P=5] which agrees with exact numerical resultsace D

(solid line), for P=5] to within 3% for S<7.

IS % |2 2_7)8*2/3
o= 2SS g, (sa | _
dt =1 12g°+S5 23 observed in numerous natural and experimental rivers, from
10-cm-wide laboratory flumes to the 1-km-wide Mississippi
do = [2.14]. . .
—L=(12q?A +ilque) 6 — 2 >, mn N A finite-amplitude solution6] that travels down-valley
dt mn=-c M=N without changing form follows from Eqs(5) by setting
de,/dt=0 andup=ccosfls—, and by expanding to third
X[16—=(1+m=n) 6+ m—n]0—mbh, (5D order in the amplitude: with 61)=Fie/2. The third-order
contribution 6B =(PY2%i/3)€%/128 to the resulting Ki-
with A= (PS¥3-ilq)/(1+ilgS™), _ noshita curve3],
Linearizing Egs.(5) for small #.,=F(ie/2)e’'e™'
with uy=0 recovers the frequency=q3(1+P)/(1+q?), &3 1
growth rate o=g*(P—q?)/(1+q?), sinuosity S=1, and 6(s)=esin(gs) +¢;| P2cos s+ zsin3gs|,  (6)

down-valley migration rate= w/q of small-amplitude per-

turbations about a straight rivE2,3]. This growth rate peaks

at q=qn=[—1+(1+P)Y?¥2 and is negative fog>q, predicts bend skewing similar to that found in nat(i&a.
=PY2 The wavelength ,=27D,/q,, of maximum growth  Combining the associated relatioSs=1+ €%/4 and q=q.
(in conventional units sets the scale for alluvial meanders =PY%(1— €2/12) gives(Fig. 1, traceA)
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1/2
Q=5 (4-9), (7)
which agrees with the linear resul,=7P? at S=1. This
third-order solution is unstab[&]; that is,q>q, leads even-
tually to river straightening and<q. leads to cutoff.

Equation(5a) readily yields an exact upper limit ag. in
the fully nonlinear regime For gq> P25 %3 initially, all
modes make negative contributions d&/'dt for all later
times becausel,=qS is fixed. Accordingly, an arbitrary
finite-amplitude river whose centerline wave numloeex-
ceeds the valuéFig. 1, traceB)

7)1/ 2

RpTE €S)

must straighten with time. This is an exact nonlinear result,
valid for arbitrary periodic river shapes, being independent

of the relative values of the mode amplitudés A first-
order Taylor expansion of Eq(8) about S=1 recovers
Eq. (7).

If q<PY?S~ 3 initially, at least thel=1 mode contrib-
utes positively tad §/dt, while the remaining modes contrib-

ute negatively. To account approximately for this competi-

tion, we insert the amplitude-expansion resufs and 65°)
into Eq. (5a), setdS¥dt=0 and q=q.=P"%5 31— ),
and ignore the small correctiahexcept in the numerator of
thel=1 term, which yieldgFig. 1, traceC)

9

PI/Z
( " 1024°¢

1+P 4
4= .
S

We can render Eq9) an explicit function ofS by ignoring
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FIG. 2. Time development of the sinuosiBy mode amplitudes
|6,|, and lateral and down-valley migration rates), andu, of a
bend apex, for an initial small-amplitude sinusoidal river centerline.
Short-time results agree with linear theory, which prediats
=3.55, S=1, and exponential growth for botf9;| (incomplete
dashed trageand —v,. Nonlinear predictions include the peak in
—vg att~3 and the negative values af near oxbow cutoff at
=5.69, which implies that the bend apex begins migratipeyalley
just before cutoff.

narrow band centered around the prediction of @g.and is
bounded strictly from above by E¢B).
In summary, Fig. 1 illustrates our extension of research on

third-order effects in the small correction term and bymeandering rivers into the nonlinear regime: tracegives

thereby employing the explicit series resi8i

1 e €& €8

s~ 1761 2302

+.. (10

for the “sine-generated curvell5] 6= esings Inversion
using only those terms shown gives the needed relatfon
=12(1-A,+A_), where A2 =(a?+1/27)"?+a and a
=(1+2/S)/3. This givese to within 0.2% forS<7.
Numerical integration 3] of Egs. (5) yields further in-
sights. To determiney, we assign thes=0 point to a bend
apex whereg(0,t)==,""__ 6,(t)=0 for all time, so that,

the weakly nonlinear critical wave number representing the
prior state of the arf5,7]; tracesB and C give our new
analytical approximations; and trabegives our exact fully-
nonlinear result.

To investigate all stages of growth for<g, in a single
simulation, we use the sine-generated initial condition with
€=0.01, g=q,,, and P=5. Figure 2 shows the resulting
time development, which agrees precisely with the linear re-
sults up=c=3.55, S=1, and|6,|=(e/2)e’" (incomplete
dashed trageat small times. Nonlinear effects above 2
increase the sinuosity, decrease the down-valley migration
rateug, and introduce higher-order modes, whose amplitudes

and v, respectively represent the time-dependent comporemain small compared witf#, |, whose slow growth at long

nents of the velocity of this apex in the(down-valley and
y (cross-valley directions. The critical wave numbey, is

times is sufficient to produce surprisingly rapid growthSof
Remarkably, nonlinear effects eventually reverse the down-

determined numerically as the threshold for long-termvalley migration of bend apexes, which actually traug-

growth of S Numerical results forP=5 and the sine-
generated initial conditiod_.;(0)= Fie/2 are shown in Fig.

valley at long times approaching cutoff. The lateral apex mi-
gration rate—v, reaches a peak near3 and decreases

1, traceD. Equation(9) underestimates these results by atslowly thereafter. Figure 3 shows the river centerlinet at
most 3% forS<7, and overestimates numerical results for=2 t=3.5, andt=5.69, when the centerlines of adjacent

the Kinoshita initial conditiond.;(0)=6}) and 6. 4(0)

river bends meet, in a manner similar to Fig. 7 of Seminara

=63} by the same margin. Thus, although the numerica[12]. Whereas Seminara included the 1 andl=3 modes,
critical wave numben, does depend on the relative values our simulations include all modes througk 33. Figure 2
of the initial mode amplitudes, it is evidently confined to a shows that 65| reaches about 30% 05| at cutoff, indicat-
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8 . . . . . S—— Controlled experimental tests on periodic flumes would
JUU, - e =35 help to determine the suitability of the model and to guide
6 N I 1=5.69 future theoretical efforts. Although nonperiodic simulations

[8,9,11,15,1%capture features of meandering that are seen in
natural rivers, such heuristic comparisons are insufficiently
precise to allow judgments of the relative merits of various
models. Periodic flume experiments should be achievable in
inclined tanks of sand17] by etching the desired initial
shape in an otherwise planar sand surface. A series of experi-
ments on small-amplitude sine-generated rivers of different
wavelengths might be used to identify the critical wave-
length A\;=27Dy/q.=27DyP 2 and the wavelength of
maximum growth  Np,=27Dg/gn=27Dg[ —1+(1
+P)¥2]712in the linear regime, both measured in conven-
tional units, which would determine values Bf, and P.

8 ! . ) : . ! s Using these values, direct comparison of experimental re-
20 22 24 26 28 30 32 34 36 sults for \;=27Dg/q. in the nonlinear regime could be
X made with the predictions summarized in Fig. 1. Experimen-

tal confirmation of the predicted peak inv, and the pre-
FIG. 3. River centerlines at dimensionless times2, 3, and

) S L ) "M dicted upstream migration of bend apexes at long times
5.69 for the simulation discussed in Fig. 2, with black dots 'dent."would also be useful. Since the model is not restricted to

Hc';g laef?fg(:igﬁfx as it migrates laterally and down-valley. Flow Isperiodic rivers, such comparisons might increase the confi-
' dence placed on its predictions for natural rivers.

ing that thel=5 mode plays a measurable role in the dy-

namics. The sinuositys=6.69 and amplitude |#,|=2.12 We gratefully acknowledge fruitful interactions with Gary
=122° att=5.69 are upper limits on the oxbow cutoff val- Parker, S. F. Edwards, Alan Kerstein, and Tao Sun. This
ues because finite-width rivers will cutoff earlier. Kinoshita work was accomplished during a stég.F.E) at the Na-
(I=3) skewing, which causes midvalley sections of the rivertional Energy Technology Laboratory, and was funded
to travel down-valley faster than bend apexes, is evident dby the Office of Fossil Energy of the U. S. Department

t=3.5 andt=>5.69. of Energy.
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