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Critical wavelength for river meandering
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A fully nonlinear modal analysis identifies a critical centerline wave numberqc for river meandering that
separates long-wavelength bends, which grow to cutoff, from short-wavelength bends, which decay. Exact,
numerical, and approximate analytical results forqc rely on the Ikeda, Parker, and Sawai@J. Fluid Mech.112,
363 ~1981!# model, supplemented by dynamical equations that govern the river migration and length. Predic-
tions also include upvalley bend migration at long times and a peak in lateral migration rates at intermediate
times. Experimental tests are suggested.
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Among the most fascinating behaviors of alluvial rivers
their tendency to meander and rework their floodplai
Some meander bends of the lower Mississippi move 20
laterally per year@1#. Even on a planar floodplain, rive
bends grow slowly in amplitude and accordingly increase
river sinuosityS5L/L0, defined as the ratio of the total rive
lengthL to the linear distanceL0 between its endpoints. A
the sinuosity increases, adjacent river bends occasion
meet each other and cut off an oxbow lake, thereby sudd
shortening the river and reducing its sinuosity.

Rivers meander because large downstream veloc
erode soil from the outside banks of large-wavelength ri
bends@2#, causing such bends to grow in amplitude. Sho
wavelength bends decay because Bernoulli’s principle
mands large velocities and erosion at theirinside banks.
Bends migrate down-valley because the cross-stream s
in the downstream velocity requires a downstream dista
D5H/2Cf to recover from changes in the channel curvat
@3#. Here,H is the average depth andCf is a dimensionless
friction coefficient.

Natural rivers are fully developed turbulent boundary la
ers, with large typical Reynolds numbers Re5UH/n'106,
where U is the average downstream velocity andn is the
kinematic viscosity of water. Consequently, momentu
transport is dominated by stretching and folding of turbul
eddies, rather than by viscous diffusion. To close the sys
of equations, the turbulent downstream bed stressts
5rCfU

2 is evaluated using constantCf and constant mas
densityr. In mechanical equilibrium, the upstream bed for
per unit areats on the overlying fluid volume must balanc
the downstream component of gravitational force per u
areargHI, whence@2# U5(gHI/Cf)

1/2, whereg is the ac-
celeration of gravity andI is the downstream bedslope.
dimensionless bank erodibilityE is defined as the propor
tionality constant between the normal bank migration r
and the excess near-bank downstream fluid velocity@2#. In-
creasing the sinuosity of a river of constant width 2b and
constant dischargeQ52bHU lowers its average slopeI
5I 0 /S and its flow velocity U5U0S21/3, and raises its
depth H5H0S1/3, where I 0 , U0, and H0 are values for a
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straight river between the same initial and final points as
sinuous river. Because of these sinuosity dependencies
mensionless variables used henceforth employ the stra
ened length and time scalesD05H0/2Cf and T0
5D0

2/bEU0.
In freely meandering rivers, bed erosion at humps a

deposition at hollows produce a uniform downstream b
slopeI, apart from small-scale dunes and ripples. The co
sponding linear centerline bed elevationz5z02Is involves
the downstream distances measured along the bed cente
line. The horizontal projection of the river is convenient
described at timet by the angleu(s,t) between the down-
stream direction and the fixed cartesian directionx̂. The cor-
responding channel curvaturek(s,t)52]u/]s, measured as
positive for turns to the right, must respond to the norm
migration velocityv(s,t), measured as positive for chann
migration to the left, as seen by a local riverbound obser
facing downstream.

The Ikeda, Parker, and Sawai equation@2# predicts the
curvature-dependent migration velocity for quasisteady n
resonant turbulent flow in shallow sinuous channels. It
convenient to rewrite this equation using dimensionless v
ables@3#,

S1/3
]v

2]s
1v5

]k

]s
1

P
S1/3

k. ~1!

Here the dimensionless numberP, which we call the
‘‘Parker number’’ in honor of Parker’s pioneering contribu
tions, measures the importance of the secondary flow. F
right to left, the terms in Eq.~1! account for the secondar
flow, the free shear, the downstream decay of cross-str
shear, and the resulting changes in the migration rate.
typical valueP'5 includes the transport of downstream m
mentum by the secondary flow discussed by Johanne
and Parker@4#. To track the centerline motion, most previou
studies of the Ikeda, Parker, and Sawai equation rely on
ordinate transformations@2,5–7# or on numerical implemen-
tations@8–10#.

To track the centerline motion, we employ exact dime
sionless nonlinear dynamical equations of motion govern
the river length and shape,

dL

dt
5E

0

L

kvds2u01uL , ~2!i-
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]u

]t
5

]v
]s

1kE
0

s

k~s8,t !v~s8,t !ds82ku0 , ~3!

which may be derived@3# from Eq. ~4! of Ref. @11#, and
which include river stretching and shrinking through t
nonlinear integral terms. Reference@11# treats stretching and
shrinking exactly, but replaces Eq.~1! by a local relationship
which precludes down-valley migration of meander ben
an essential feature of real rivers. To allow for maximu
flexibility in defining the upstream (s50) and downstream
(s5L) ends of the river, Eqs.~2! and~3! include the respec
tive downstream migration velocitiesu0 and uL . Equation
~3!, with u050, appears in previous studies of periodic ri
ers @12,13#. Equation ~2!, introduced here, allows explici
investigation of the time evolution of the river length, an
plays a key role in the derivation of our fully nonlinear st
bility results.

Equation ~2! gives the time rate of change of the riv
length, including both lateral and downstream contributio
During a timedt, river migration displaces the centerlin
laterally a distancevdt, stretching an infinitesimal centerlin
arc of lengthds and radiusR to a new lengthds8 and radius
R85R1vdt, while the subtended angleds/R5ds8/dR8 re-
mains unchanged. Integrating the resulting relationds85(1
1kvdt)ds gives the lateral contribution*0

Lkvds to Eq. ~2!,
wherek51/R is the local curvature. A downstream contr
butionuL - u0 is also included to allow flexibility in defining
the ends of the river.

To study the nonlinear dynamics of periodic meander p
terns, we writeu05uL and

u~s,t !5 (
l 52`

1`

u l~ t !eilqs, ~4!

with a time-dependent centerline wave numberq52p/L and
wavelengthL, fixed Cartesian wave numberq052p/L0 and
wavelengthL0, sinuosity S5L/L05q0 /q, and the reality
conditionu2 l5u l* . Accordingly, Eqs.~1!–~3! reduce to

dS

dt
522q2S2/3(

l 51

`
l 2q22PS22/3

l 2q21S22/3
l 2uu l u2, ~5a!

du l

dt
5~ l 2q2Al1 i lqu0!u l2q2 (

m,n52`
mÞn

1`
mn

m2n
An

3@ lu l2~ l 1m2n!u l 1m2n#u2mun, ~5b!

with Al5(PS21/32 i lq )/(11 i lqS1/3).
Linearizing Eqs. ~5! for small u6157( i e/2)este7 ivt

with u050 recovers the frequencyv5q3(11P)/(11q2),
growth rate s5q2(P2q2)/(11q2), sinuosity S51, and
down-valley migration ratec5v/q of small-amplitude per-
turbations about a straight river@2,3#. This growth rate peaks
at q5qm5@211(11P)1/2#1/2 and is negative forq.qc
5P1/2. The wavelengthlm52pD0 /qm of maximum growth
~in conventional units! sets the scale for alluvial meande
04530
,

.

t-

observed in numerous natural and experimental rivers, fr
10-cm-wide laboratory flumes to the 1-km-wide Mississip
@2,14#.

A finite-amplitude solution@6# that travels down-valley
without changing form follows from Eqs.~5! by setting
du l /dt50 and u05c cosuus50, and by expanding to third
order in the amplitudee with u61

(1)57 i e/2. The third-order
contribution u63

(3)5(P1/27 i /3)e3/128 to the resulting Ki-
noshita curve@3#,

u~s!5e sin~qs!1
e3

64S P1/2cos 3qs1
1

3
sin 3qsD , ~6!

predicts bend skewing similar to that found in nature@5#.
Combining the associated relationsS511e2/4 and q5qc
5P1/2(12e2/12) gives~Fig. 1, traceA)

FIG. 1. Exact and approximate nonlinear results for the criti
dimensionless centerline wave numberqc vs the river sinuosityS
5L/L0. Here, the ‘‘centerline wavelength’’L is the distance be-
tween adjacent bend apexes measured along the river cente
and the ‘‘cartesian wavelength’’L0 is this distance measured alon
a straight line. At the globally unstable fixed pointq52p/L5qc ,
finite-amplitude periodic meander patterns migrate downvalley
constant speed without changing form. Small-wavelength be
with q.qc are obliterated by river straightening, whereas larg
wavelength bends withq,qc grow unrestrained until adjacen
bends meet and abandon an oxbow lake. Thus, oxbow cutoff is
predicted fate of growing meander bends unhindered by nat
topography or by human intervention. Since small-wavelen
bends quickly disappear, large-wavelength bends are predicte
dominate in nature. An expansion to third order in the bend am
tude @5,7# gives P21/2qc5(42S)/3 @traceA, Eq. ~7!#, valid for S
→1, whereP measures the importance of the secondary flow. T
exact upper limitP21/2qc5S21/3 @traceB, Eq. ~8!# holds for arbi-
trary Sand for arbitrary periodic rivers; bends withq.P1/2S21/3 are
obliterated by straightening regardless of the details of their Fou
spectra. Equation~9! supplies an explicit analytical estimate@trace
C, for P55# which agrees with exact numerical results@trace D
~solid line!, for P55# to within 3% for S<7.
4-2



ul
en

-
ti

f

by

po

rm

a
fo

ca
es
a

on

the

ith
g
re-

n
des

wn-

i-
s
t
nt
ara

ne.

n

RAPID COMMUNICATIONS

CRITICAL WAVELENGTH FOR RIVER MEANDERING PHYSICAL REVIEW E63 045304~R!
qc5
P1/2

3
~42S!, ~7!

which agrees with the linear resultqc5P1/2 at S51. This
third-order solution is unstable@5#; that is,q.qc leads even-
tually to river straightening andq,qc leads to cutoff.

Equation~5a! readily yields an exact upper limit onqc in
the fully nonlinear regime. For q.P1/2S21/3 initially, all
modes make negative contributions todS/dt for all later
times becauseq05qS is fixed. Accordingly, an arbitrary
finite-amplitude river whose centerline wave numberq ex-
ceeds the value~Fig. 1, traceB)

qc5
P1/2

S1/3
~8!

must straighten with time. This is an exact nonlinear res
valid for arbitrary periodic river shapes, being independ
of the relative values of the mode amplitudesu l . A first-
order Taylor expansion of Eq.~8! about S51 recovers
Eq. ~7!.

If q,P1/2S21/3 initially, at least thel 51 mode contrib-
utes positively todS/dt, while the remaining modes contrib
ute negatively. To account approximately for this compe
tion, we insert the amplitude-expansion resultsu1

(1) andu3
(3)

into Eq. ~5a!, set dS/dt50 and q5qc5P1/2S21/3(12d),
and ignore the small correctiond except in the numerator o
the l 51 term, which yields~Fig. 1, traceC)

qc5
P1/2

S1/3 S 12
11P
1024

e4D . ~9!

We can render Eq.~9! an explicit function ofS by ignoring
third-order effects in the small correction term and
thereby employing the explicit series result@3#

1

S
512

e2

4
1

e4

64
2

e6

2304
1••• ~10!

for the ‘‘sine-generated curve’’@15# u5e sinqs. Inversion
using only those terms shown gives the needed relatione2

512(12A11A2), where A6
3 5(a211/27)1/26a and a

5(112/S)/3. This givese to within 0.2% forS<7.
Numerical integration@3# of Eqs. ~5! yields further in-

sights. To determineu0, we assign thes50 point to a bend
apex whereu(0,t)5( l 52`

1` u l(t)50 for all time, so thatu0

and v0 respectively represent the time-dependent com
nents of the velocity of this apex in thex ~down-valley! and
y ~cross-valley! directions. The critical wave numberqc is
determined numerically as the threshold for long-te
growth of S. Numerical results forP55 and the sine-
generated initial conditionu61(0)57 i e/2 are shown in Fig.
1, traceD. Equation~9! underestimates these results by
most 3% forS<7, and overestimates numerical results
the Kinoshita initial conditionu61(0)5u61

(1) and u63(0)
5u63

(3) by the same margin. Thus, although the numeri
critical wave numberqc does depend on the relative valu
of the initial mode amplitudes, it is evidently confined to
04530
t,
t

-

-

t
r

l

narrow band centered around the prediction of Eq.~9!, and is
bounded strictly from above by Eq.~8!.

In summary, Fig. 1 illustrates our extension of research
meandering rivers into the nonlinear regime: traceA gives
the weakly nonlinear critical wave number representing
prior state of the art@5,7#; tracesB and C give our new
analytical approximations; and traceD gives our exact fully-
nonlinear result.

To investigate all stages of growth forq,qc in a single
simulation, we use the sine-generated initial condition w
e50.01, q5qm , and P55. Figure 2 shows the resultin
time development, which agrees precisely with the linear
sults u05c53.55, S51, and uu1u5(e/2)esmt ~incomplete
dashed trace! at small times. Nonlinear effects abovet.2
increase the sinuosityS, decrease the down-valley migratio
rateu0, and introduce higher-order modes, whose amplitu
remain small compared withuu1u, whose slow growth at long
times is sufficient to produce surprisingly rapid growth ofS.
Remarkably, nonlinear effects eventually reverse the do
valley migration of bend apexes, which actually travelup-
valleyat long times approaching cutoff. The lateral apex m
gration rate2v0 reaches a peak neart53 and decrease
slowly thereafter. Figure 3 shows the river centerline at
52, t53.5, andt55.69, when the centerlines of adjace
river bends meet, in a manner similar to Fig. 7 of Semin
@12#. Whereas Seminara included thel 51 andl 53 modes,
our simulations include all modes throughl 533. Figure 2
shows thatuu5u reaches about 30% ofuu3u at cutoff, indicat-

FIG. 2. Time development of the sinuosityS, mode amplitudes
uu l u, and lateral and down-valley migration rates2v0 andu0 of a
bend apex, for an initial small-amplitude sinusoidal river centerli
Short-time results agree with linear theory, which predictsu0

53.55, S51, and exponential growth for bothuu1u ~incomplete
dashed trace! and 2v0. Nonlinear predictions include the peak i
2v0 at t'3 and the negative values ofu0 near oxbow cutoff att
55.69, which implies that the bend apex begins migratingup-valley
just before cutoff.
4-3
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ing that thel 55 mode plays a measurable role in the d
namics. The sinuosityS56.69 and amplitude 2uu1u52.12
5122° att55.69 are upper limits on the oxbow cutoff va
ues because finite-width rivers will cutoff earlier. Kinoshi
( l 53) skewing, which causes midvalley sections of the riv
to travel down-valley faster than bend apexes, is eviden
t53.5 andt55.69.

FIG. 3. River centerlines at dimensionless timest52, 3, and
5.69 for the simulation discussed in Fig. 2, with black dots iden
fying a bend apex as it migrates laterally and down-valley. Flow
from left to right.
,
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Controlled experimental tests on periodic flumes wou
help to determine the suitability of the model and to gui
future theoretical efforts. Although nonperiodic simulatio
@8,9,11,15,16# capture features of meandering that are see
natural rivers, such heuristic comparisons are insufficien
precise to allow judgments of the relative merits of vario
models. Periodic flume experiments should be achievabl
inclined tanks of sand@17# by etching the desired initia
shape in an otherwise planar sand surface. A series of ex
ments on small-amplitude sine-generated rivers of differ
wavelengths might be used to identify the critical wav
length lc52pD0 /qc52pD0P21/2 and the wavelength o
maximum growth lm52pD0 /qm52pD0@211(1
1P)1/2#21/2 in the linear regime, both measured in conve
tional units, which would determine values ofD0 and P.
Using these values, direct comparison of experimental
sults for lc52pD0 /qc in the nonlinear regime could b
made with the predictions summarized in Fig. 1. Experim
tal confirmation of the predicted peak in2v0 and the pre-
dicted upstream migration of bend apexes at long tim
would also be useful. Since the model is not restricted
periodic rivers, such comparisons might increase the co
dence placed on its predictions for natural rivers.
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